Use of point-count surveys is a popular method for collecting data on abundance and distribution of birds. However, analyses of such data often ignore potential differences in detection probability. We adapted a removal model to directly estimate detection probability during point-count surveys. The model assumes that singing frequency is a major factor influencing probability of detection when birds are surveyed using point counts. This may be appropriate for surveys in which most detections are by sound. The model requires counts to be divided into several time intervals. Point counts are often conducted for 10 min, where the number of birds recorded is divided into those first observed in the first 3 min, the subsequent 2 min, and the last 5 min. We developed a maximum-likelihood estimator for the detectability of birds recorded during counts divided into those intervals. This technique can easily be adapted to point counts divided into intervals of any length. We applied this method to unlimited-radius counts conducted in Great Smoky Mountains National Park. We used model selection criteria to identify whether detection probabilities varied among species, throughout the morning, throughout the season, and among different observers. We found differences in detection probability among species. Species that sing frequently such as Winter Wren (Troglodytes troglodytes) and Acadian Flycatcher (Empidonax virescens) had high detection probabilities (∼90%) and species that call infrequently such as Pileated Woodpecker (Dryocopus pileatus) had low detection probability (36%). We also found detection probabilities varied with the time of day for some species (e.g. thrushes) and between observers for other species. We used the same approach to estimate detection probability and density for a subset of the observations with limited-radius point counts.